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LOAD-BALANCING CLUSTER

RELATED APPLICATIONS

This application is a continuation of and claims priority
under 35 U.S.C. §120 to U.S. patent application Ser. No.
13/899,476, filed May 21, 2013, titled “Load-Balancing
Cluster,” the entire contents of which are incorporated herein
by reference for all purposes. application Ser. No. 13/899,476
is a continuation of and claims priority under 35 U.S.C. §120
to U.S. patent application Ser. No. 12/880,313, filed Sep. 13,
2010, titled “Load-Balancing Cluster,” the entire contents of
which are incorporated herein by reference for all purposes.
application Ser. No. 12/880,313 is a continuation-in-part
(CIP) of and claims priority under 35 U.S.C. §120to U.S. Pat.
No. 8,015,298, issued Sep. 6, 2011, titled “Load-Balancing
Cluster,” the entire contents of which are incorporated herein
by reference for all purposes. U.S. Pat. No. 8,015,298 is
related to and claims priority under 35 U.S.C. §119(e) to
United States Patent Application No. 61/064,339, filed Feb.
28, 2008, titled “Load-Balancing Cluster,” the entire contents
of which are incorporated herein by reference for all pur-
poses.

FIELD OF THE DISCLOSURE

This invention relates to content delivery.

GLOSSARY

As used herein, unless stated otherwise, the following
terms or abbreviations have the following meanings:

MAC means Media Access Control;

MAC address means Media Access Control address;

IP means Internet Protocol;

TCP means Transmission Control Protocol;

“IP address” means an address used in the Internet Protocol
to identify electronic devices such as servers and the like;

ARP means Address Resolution Protocol;

HTTP means Hyper Text Transfer Protocol;

URL means Uniform Resource Locator;

IGMP means Internet Group Management Protocol;

DNS means Domain Name System.

BRIEF DESCRIPTION OF THE DRAWINGS

The following description, given with respect to the
attached drawings, may be better understood with reference
to the non-limiting examples of the drawings, wherein:

FIG. 1 depicts a load-balancing cluster; and

FIG. 2 depicts an exemplary TCP connection handoff; and

FIGS. 3-4 are flowcharts of a TCP connection handoff.

FIG. 5 depicts a collection of load-balancing clusters.

FIGS. 6A-B are flowcharts of processing associated with
server interactions.

FIG. 7 is a flowchart of processing associated with server
interactions.

THE PRESENTLY PREFERRED EXEMPLARY
EMBODIMENTS

As shown in FIG. 1, a load-balancing cluster 10 is formed
by an n-port switch 12 connected to a number (between 1 and
n) of servers 14-1, 14-2, . . ., 14-m, where m=n (collectively
“servers 14”) via ports 16-1, 16-2, . . ., 16-n. Not every port
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2

16-% of the switch 12 needs to have an actual (or operating)
server 14 connected thereto. The switch 12 is preferably an
Ethernet switch.

Each server 14-j includes a processor (or collection of
processors) constructed and adapted to provide data in
response to requests. In presently preferred implementations,
all servers are the same and run the same version of operating
system (OS), with same kernel and software. However, those
skilled in the art will realize and understand, upon reading this
description, that the servers may be any server running any
type of server processes. Those skilled in the art will further
realize and understand, upon reading this description, that the
servers need not all be the homogeneous, and heterogeneous
servers are contemplated herein.

Each server 14-j in the cluster 10 is addressable by aunique
hardware address—in the case of the Ethernet, a so-called a
MAC address (also known sometimes as an Ethernet
address). For the purposes of this description, the MAC or
actual hardware address of the j-th cluster server is denoted
MAC;.

The servers 14 in the load-balancing cluster 10 are all
assigned the same virtual IP address (VIP), e.g., ©“10.0.0.1”.
Each server preferably also has at least one other unique
(preferably local) IP address, denoted IPj for the j-th cluster
server. Preferably a VIP address is also has MAC address
(denoted MACVIP) associated with it, with the VIP’s MAC
address being shared by all the servers in a cluster. That is, in
preferred embodiments, the (VIP, VIP’s MAC address) pair,
i.e., (VIP, MACVIP) is the same for all the servers in a cluster.
However, as noted, each server also preferably has its own
private (IP address, IP’s MAC address) pair (e.g., (IPi,
MACH)).

The servers 14 in cluster 10 are addressable externally
(e.g., from network 17, e.g., the Internet) via the local (Eth-
ernet) network 13 and switch 12. For example, using router
11, an external request from client 19 via network 17 (such as
the Internet) to the IP address VIP is directed via the switch 12
to each real cluster server 14-j connected thereto. The switch
12 forwards Ethernet frames, preferably as fast and as effi-
ciently as possible. The switch 12 may perform one-to-one
(unicast) forwarding or one-to-many (broadcast or multicast)
forwarding. In unicast forwarding a packet enters the switch
on one port and leaves the switch on another port. In the case
of'broadcast or multicast forwarding packet enters the switch
on one port and multiple copies of the same packet leave the
switch on many ports. When broadcast forwarding (using,
e.g., a so-called “unlearned” unicast MAC address), the
switch sends all incoming packets to every port, whereas
when multicasting mode (using a multicast MAC address),
the switch sends all packets to those ports that have servers
connected thereto. In either case, the desired result is that all
cluster members—i.e., all servers 14 connected to the switch
12—get all packets destined for the IP address VIP.

In case of multicast MAC address, the switch 12 may use
so-called “IGMP snooping” to learn which physical ports
belong to live servers. In case of an “unlearned” unicast MAC
address, the switch 12 forwards incoming traffic to all ports.

The system is not limited by the manner in which the
switch 12 provides packets to the servers 14 connected
thereto. Those skilled in the art will realize and understand,
upon reading this description, that different and/or other
methods of achieving this result may be used.

In a local Ethernet network, an Ethernet MAC address is
used to identify a particular host machine connected to the
network. In such a network, a protocol such as, e.g., ARP, may
be used to translate between a host’s IP address and its Eth-
ernet MAC address. For example, a host on an IP network
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wishing to obtain a physical address broadcasts an ARP
request onto the IP network. A host on the network that has the
IP address in the request then replies with its physical hard-
ware address.

An IP router provides a gateway between two (or more) IP
networks. The purpose of an IP router is to forward IP packets
from one IP network to another. An IP router should have an
interface and IP address in each network to which it is con-
nected. So, IP router 11 has at least two interfaces and two IP
addresses: one IP address to connect to the upstream network
(17 in FIG. 1) and the other IP address to connect to the local
Ethernet network (13 in FIG. 1).

A request from client 19 is made to the IP address VIP (via
network 17) and reaches the router 11. The request comes into
the router 11 via the interface connected to the upstream
network 17, and the router 11 forwards the request to the VIP
(on the local Ethernet network 13).

Because the local network 13 is an Ethernet network and
because router 11 is connected directly to the local network
13, the router 11 encapsulates the IP packet (i.e., the request)
into an Ethernet packet before sending it. In order for the
router 11 to know where to send the Ethernet packet, the
router makes an ARP request. Once the Ethernet packet is
sent, the switch 12 forwards it to the server(s) 14.

In order to affect ARP mapping, a router (e.g., router 11)
typically maintains a so-called ARP table 15 (mapping IP
addresses to the MAC addresses of hosts connected thereto).
In this manner, when an IP packet is sent to a particular host
that is connected to the router 11, the router automatically
resolves to the destination host’s MAC address and forwards
the packet to the appropriate host. The router 11 will try to
deliver the IP packet directly to destination (i.e., the VIP)
because the router is connected to the same local Ethernet
network.

Certain special MAC addresses (e.g., broadcast or multi-
cast) can be used to instruct a switch to broadcast (or multi-
cast) a packet, thereby providing a packet to all hosts con-
nected to that switch. Specifically, e.g., an Ethernet switch
sends a packet with a broadcast or multicast MAC address in
its destination field to every port (or every port with a server
connected thereto), whereby every host/server connected to
the Ethernet switch should get a copy of the packet.

In order for two machines (e.g., client 19 and one of the
servers 14) to interact, a network connection must be estab-
lished between them. The client 19 has the IP address of a
server (in this case VIP), and tries to establish a connection via
the network 17 and the router 11.

When the router 11 gets a request to connect to a server
with the IP address VIP (shared by the cluster servers 14-f),
the router maps the IP address VIP to a special MAC address
that causes the switch 12 to forward the request to each server
connected thereto. In the case of the load-balancing cluster
10, preferably the switch 12 treats the MAC address for a VIP
as a multicast Ethernet address. Consequently, each member
of'the cluster 12 (i.e., each server 14) sees all incoming traffic
(addressed to VIP). The router’s ARP table 15 thus gets a
multicast Ethernet address for the VIP, and thus, at the IP
layer, all incoming traffic to the VIP address is provided to all
servers 14 connected to the switch 12.

In a presently preferred implementation, the switch 12
maintains a so-called “forwarding database,” (FDB 23 in FIG.
1) to map destination Ethernet MAC addresses to physical
Ethernet ports 16 on switch 12. When switch 12 receives an
Ethernet packet, the switch queries the forwarding database
(e.g., using the destination MAC address as a key) and tries
determine which physical port should be used to send the
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Ethernet packet out. This forwarding database 23 allows
switch 12 to forward Ethernet packets only where they should
go.

However, when switch 12 receives an Ethernet packet and
cannot find an entry in its forwarding database for a destina-
tion Ethernet MAC address (i.e., e.g., in the case of an
unknown/unlearned MAC address), the switch forwards such
an Ethernet packet to all the ports (except the one it came
from).

A multicast Ethernet MAC address has entry in the
switch’s 12 forwarding database instructing it to forward
Ethernet packet to multiple ports 16.

An Ethernet switch will generally try to learn by looking at
the MAC addresses of all the Ethernet packets passed through
the switch and will try to update its forwarding database
accordingly. However, it is preferable to ensure that the
switch 12 never “learns” about MAC address for the VIP and
never builds an association between VIP cluster MAC
addresses and physical ports 16. The switch 12 is thereby
forced to always forward Ethernet packets destined for the
cluster MAC address (and thus the cluster VIP) to multiple/all
ports 16.

Those skilled in the art will realize and understand, upon
reading this description, that different and/or other ways of
causing the switch to provide incoming data to all cluster
members may be used.

Having found a cluster server with the IP address VIP, a
TCP connection must be established between the client 19
and that cluster server 14. A TCP connection is established
between two machines, in part, using a well-known three-way
handshake (SYN, SYN/ACK, ACK). This protocol is
described, e.g., in “RFC 793—Transmission Control Proto-
col,” September 1991, the entire contents of which are incor-
porated herein by reference for all purposes.

In the cluster 10, when a TCP connection is first estab-
lished, each cluster member (i.e., each server 14) effectively
decides which server 14 will handle a connection. In effect,
each cluster member decides for itself whether or not to
handle a connection. Once a particular cluster member takes
(or is given) responsibility for a particular connection, the
other cluster members do not handle (and need not even see)
traffic related to that connection. The manner of server selec-
tion is described below.

Each cluster member (server) includes a stateful firewall
(FW) mechanism that is used to filter unwanted incoming
traffic. In FIG. 1, for the purposes of this discussion, the
firewall mechanism for the j-th server is denoted 20-j. Upon
receipt of an IP packet, the firewall first determines whether
the packet is for an old (i.e., already established) connection
or for a new connection. For already-established connections
each firewall mechanism is configured to reject incoming
traffic that does not have an entry in its firewall state table 22,
and only to accept incoming traffic that does have an entry in
its firewall state table. In FIG. 1, the firewall table for the j-th
server is denoted 22-j. The firewall must still inspect packets
associated with new connections (i.e., connections in the
process of being established, specifically packets with only
SYN flag set). To summarize: first the firewalls make a deci-
sion as to whether an IP packet is “new” or “old”. If the packet
is “old” then it is discarded unless a state entry exists. If the
packet is “new” it is passed for further inspection (e.g., load
balancing) and then, depending on the results, can be either
discarded or accepted.

Once it is determined (e.g., as described below) that a
particular cluster member 14-j is going to handle incoming
traffic on a certain connection, a corresponding entry is cre-
ated in that member’s firewall state table 22-j. Specifically,
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the cluster member/server creates a firewall state table entry
for any packet that belongs to a connection initiated from or
accepted by the cluster member. If a packet indicates that a
remote host wishes to open a new connection (e.g., via an [P
SYN packet), then such packet gets inspected by a firewall
rule that determines whether or not the cluster member should
accept it. If the packet was accepted by a cluster member, the
firewall state table for that cluster member is updated and all
subsequent packets on the connection will be accepted by the
cluster member. The firewalls of the other cluster members
will block packets that they are not supposed to be processing
(i.e., packets that do not belong to connections they initiated
or accepted).

The firewall rule preferably ensures that only one cluster
member will accept a particular connection, however in some
cases, it is possible that more than one cluster member decide
to accept the same connection. This situation would create
duplicate responses from the cluster. However, as those
skilled in the art will realize and understand, upon reading this
description, this is not a problem for a TCP connection
because the remote host will only accept one response and
discard others. In this scenario only one cluster member will
be able to communicate with the remote host, other cluster
members will have a stuck connection that will be closed due
to timeout. In the case when no servers respond to an initial
SYN packet the client will retry and will send another SYN
packet after a timeout. While cluster members may have
inconsistent state, they should converge and achieve consis-
tent state quickly.

The firewall determines which cluster member should
handle a particular connection using a given mapping func-
tion, preferably a hash function. By way of example, the hash
function jhash, a standard hash function supplied in the Linux
kernel, may be used. Those skilled in the art know how to
produce a number in a particular range from the output of a
hash function such as jhash. The hash function produces an
integer value. To obtain a value in the range 1 to m, for some
m, the output of the hash function is divided by m and the
remainder is used (this operation may be performed using an
integer remainder or modulo operation). For load balancing
in a cluster, the value of m is the number of currently live
servers in the cluster. Those skilled in the art will realize and
understand, upon reading this description, that the function’s
output value need not be offset by one if the buckets are
numbered starting at zero.

Using, e.g., jhash, the function MAP(source IP, m) may be
implemented as:

(fhash(parameters)modulo m)

If there are m alive servers in a cluster, each server 14
performs the (same) mapping function (with the same inputs).
Each server or cluster member 14 is associated with a par-
ticular local server number (or agent identifier (ID)). E.g., if
there are eight servers 14-0, . . ., 14-7, their corresponding
agent IDs may be 0, 2, . . ., 7, respectively. Each server
compares the result of the mapping function (e.g., hash
modulo m) to its local server number. If the result of the
mapping function is equal to the local server number, the
packet is accepted, otherwise the packet is dropped.

Note that the exemplary functions shown above all operate
on values related to the particular connection (e.g., source and
destination address and port information). However, in a sim-
plified case, the mapping function may be one which merely
takes as input the number of active servers (MAP (m)—
{1 ... m}). An example of such a function is a round-robin
function. Another example of such a function is one which
uses external (possibly random) information. Note, however,
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that since all servers have to use the same mapping function
and have to produce the same result, such a function would
need to access a global space and all invocations of such a
function (from each cluster server) would need to be operat-
ing on the same values.

Example |
By way of example, and without limitation, consider a

cluster with 8 ports and with 7 active servers connected to
those ports as shown in the following table:

Port #. 0 1 2 3 4 5 6 7
Server SO S1 S2 S3 S4 — S6 S7
Bucket 0 1 2 3 4 5 6

In this case, the number of active servers, m, is 7, there are
seven buckets (numbered 0 to 6), and so the mapping function
should produce a number in the range 0 to 6. Suppose, for the
sake of this example, that the mapping function is:

MAP(source IP, destination IP, destination port,
m)=hash(source IP, destination IP, destination
port) modulo m

If a connection request comes in from IP address
123.156.189.123, for the VIP (1.0.0.1) on port 80. Each server
runs the mapping function:

hash(123.222.189.123, 1.0.0.1, 80) modulo 7

Suppose that this mapping produces a value of 4 then
server S4 (which corresponds to bucket 4) handles the con-
nection. Suppose that at some time one of the servers, e.g., S3
becomes inactive. The status of the cluster is then as follows:

Port #. 0 1 2 3 4 5 6 7
Server SO S1 S3 — S4 — S5 S6
Bucket 0 1 2 — 4 4 5

Notice that the association between servers and buckets has
changed, so that server S4 is now associated with bucket 3,
and server S5 is associated with bucket 4. Now, as there are
only five “alive” severs, the mapping function must produce a
value in the range 0 to 5. If a new connection comes in, and if
the mapping function produces a value 4, then server S6 (not
S5) will handle this connection.

If a new server S7 is connected to port 5, the number of
servers becomes 7 and the status of the cluster would be:

Port #. 0 1 2 3 4 5 6 7

Server so st s2 — sS4 ST S5 S6

Bucket 0 1 2 3 4 5 6
End of Example I

Those skilled in the art will realize and understand, upon
reading this description, that the buckets may be renumbered
or reordered in different ways when a server is added to or
removed from the cluster. For example, it may be desirable to
give the new server the bucket number 5 and to leave the other
servers as they were. It should be noted that existing connec-
tions are not affected by server/bucket renumbering because
load balancing is only performed on new connections. Exist-
ing (i.e., old) connections handled entirely in the firewall.
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Heartbeat

Each cluster member 14 includes a so-called heartbeat
processes/mechanism 18. Each heartbeat mechanism 18 (on
each cluster member 14) is a process (or collection of pro-
cesses) that performs at least the following tasks:

monitors server configurations on the cluster;

answers ARP queries for the configured VIPs;

monitors local state and state of other cluster members; and

controls local load balancing firewall configuration.

The heartbeat monitors the state of VIPs on servers. Each
server may have more than one VIP configured, and the
heartbeat keeps track of each VIP’s state separately.

While described herein as a single mechanism, those
skilled in the art will realize and understand, upon reading this
description, that the various functions of the heartbeat mecha-
nism can each be considered a separate function or mecha-
nism.

The Heartbeat Mechanism Monitors Server Configuration on
the Cluster

The heartbeat mechanism 18 on each cluster member/
server 14 determines its own state as well as that of each VIP
on other cluster members. (In order to simplify the drawing,
not all of the connections between the various heartbeat
mechanisms are shown in FIG. 1.)

On each cluster member/server, heartbeat mechanism 18
maintains information about other VIPs in the cluster 10
(preferably all other VIPs). To this end, the heartbeat mecha-
nism 18 builds and maintains a list of VIPs connected to the
switch 12, and then, for each of those VIPs, maintains (and
routinely updates) information. The heartbeat mechanism 18
on each server 14 first builds a list of network interfaces in the
system and obtains information about IP addresses on these
interfaces. The heartbeat mechanism 18 may, e.g., use, as its
main input, a table containing information about the local
cluster and VIPs. In general, an external process may provide
VIP configuration on the local cluster to the heartbeat pro-
cess, e.g., in a form of table. Those skilled in the art will know
and understand, upon reading this description how such a
process and table may be defined and configured.

The heartbeat mechanism 18 considers each VIP in the
cluster 10 to be in one of three states, namely “configured”,
“connecting” and “connectable”. In order to maintain these
states, the heartbeat mechanism 18 obtains a list of VIPs that
should be configured on the cluster 10. Each VIP from the list
is preferably cross-checked against list of IP addresses on all
interfaces. If a match is found, the VIP is marked as “config-
ured”. (A VIP is in the “configured” state—when the VIP is
configured on one of the local (to host) interfaces). For every
VIP marked as “configured”, the heartbeat mechanism 18
tries to initiate a TCP connection on a specified port, e.g.,
either 80 or 443. As soon as connection to a VIP is initiated,
the VIP is marked as “connecting”. If connection to a VIP is
successful, the VIP is marked as “connectable”. A VIP’s state
is “connecting” when a TCP health check is currently in-
progress; a VIP’s state is “‘connectable” when the most recent
TCP health check succeeded.

The heartbeat mechanism 18 continuously performs the
actions described above, preferably at fixed, prescribed time
intervals.

If a VIP changes its state or completely disappears from the
list of IP addresses, a state transition in noted. Servers are
automatically configured (or removed) on (from) loopback
clone interfaces as needed. In a presently preferred imple-
mentation, the heartbeat mechanism takes over the first 100
(10:0-10:99) loopback clone interfaces. If needed, manual
loopback interfaces can be configured starting from 10:100
and up.
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The Heartbeat Mechanism Answers Arp Queries for the Con-
figured VIPS

Each active heartbeat mechanism 18 continuously listens
for ARP requests. Upon receipt of an ARP request, the heart-
beat mechanism examines request to see if it relates to a VIP
that should be configured on the cluster. If the ARP request
does relate to a VIP, the heartbeat mechanism checks if the
VIP is in “configured” state and if so, the heartbeat mecha-
nism replies with an ARP reply for that VIP.

Although multiple heartbeat mechanisms may reply to the
same ARP request, this is not a problem, since they will each
return the same MAC address (MACVIP).

The Heartbeat Mechanism Monitors Local State and State of
Other Cluster Members

The heartbeat mechanism 18 preferably tries to maintain
full state information for all servers 14 in the cluster 10. State
per cluster preferably includes one or more of: (a) number of
cluster members that should serve traffic for the cluster, (b)
number of cluster members that are serving traffic for the
cluster; and (c) timestamp information. Those skilled in the
art will realize and understand, upon reading this description,
that different and/or other state information may be main-
tained for the cluster and for cluster members.

Each heartbeat mechanism preferably announces its full
state to other cluster members at a prescribed time interval.
State updates are preferably sent to a multicast UDP address
which is shared by all cluster members. (Note: this UDP
multicast is not the same as the VIP multicast discussed
above.) The heartbeat mechanism can also be configured to
send multiple unicast UDP messages to each member of the
cluster when performing state announcing.

Each heartbeat mechanism updates its state upon receiving
state update from other cluster members if the following
conditions are met: the server is present on the receiving
cluster member and the received state is “newer” (per times-
tamp) than the current state on receiving cluster member.
Since a timestamp is used, preferably clocks on all cluster
members are synchronized.

At prescribed time intervals a heartbeat mechanism 18
analyzes its state and checks for state transitions. The heart-
beat mechanism checks each server’s state and makes sure
that it is fresh. So-called “non-fresh” servers are automati-
cally considered as “down”. Each server’s state is compared
to its previous state, and, if different, a state transition is
noted.

Changes to VIP state are made as they detected, based on
the current heartbeat’s view of the cluster.

Inter-Cluster Handoff

As described thus far, server selection has been made
within a cluster by the cluster members at the TCP level. The
system does not require a load balancing switch, thereby
reducing the cost. Instead, as described, the system duplicates
incoming (client-to-cluster) traffic to all servers in the cluster
and lets each server decide if it is to deal with particular part
of'the incoming traffic. All servers in the cluster communicate
with each other and decide on an individual server’s health.

Another level of server selection—within a cluster—is also
provided, as a result of which an initially-selected server
(selected as described above) may pass on (or attempt to pass
on) responsibility for a particular connection to another clus-
ter member. For example, if one server in a cluster has already
handled a particular request for a certain resource, that server
may have that resource cached. The server with the already-
cached copy of the resource may then be a better choice than
another server in the cluster to process a request.

Accordingly, in some cases, after receiving a request from
a client for a certain resource (after a server has been selected
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and the TCP connection has been established, as described
above), the server may ascertain whether it is responsible for
handling/serving the resource, and, if not, the previously-
selected server may notify (or provide a notification) to
another cluster member that is responsible for handling the
resource (e.g., another cluster member that already has a copy
of the requested resource). The notification may include a
hand-off request to so that another cluster member respon-
sible for the resource can server the resource itself. Or, alter-
natively, the notification may include a request for a copy of
the resource (e.g., via a peer-fill request) from another cluster
member responsible for the resource (i.e., that already has a
copy of the requested resource).

The cluster member responsible for (handling) the
requested resource may process the notification from the
previously or originally selected server ina number of ways.
For instance, a cluster member that has previously served the
requested resource (or that is ‘responsible’ for handling the
request, or already has a copy of the requested resource) may
determine whether to accept or reject a hand-off request (or a
peer-fill request) from the previously or originally selected
server. For example, the other cluster member may decide to
accept or reject the hand-off request (or peer-fill request)
based on various attributes of the requested resource such as,
but not limited to, the size and popularity of the requested
resource.

In one embodiment, the responsible server accepts a hand-
off request (or rejects a peer-fill request) if the size of the
request resource exceeds a threshold value. This step is
advantageous because copying a large resource to the previ-
ously selected server is inefficient and would not be a worth-
while expenditure of system and network resources. If, on the
other hand, the size of the requested resource is small (i.e.,
does not exceed a size threshold), then it may be worthwhile
to reject the hand-off request (or accept the peer-fill request)
and provide a copy of the requested resource to the previously
selected sever so that the previously selected server can
handle the request.

According to another example embodiment, if it deter-
mined that the requested resource is popular (i.e., exceeds a
popularity threshold), then the responsible server may reject
the hand-off request (or accept/honor the peer-fill request)
and (indirectly) force the previously selected server to obtain
and serve the requested resource (or simply provide a copy of
the requested resource to the previously selected server).
Since the resource is popular and, thus, likely to continue to
be requested frequently, it would be beneficial for other serv-
ers (i.e., the previously selected server) to have a copy of the
requested resource so that the requested “popular” resource
can be served more efficiently. For example, in addition to
sending a hand-off rejection message, the responsible server
may also provide a copy of the requested resource to the
previously selected server (or the previously selected server
may also obtain a copy of the requested resource from other
sources, such as other peers, upstream servers, etc.).

As used herein, a “resource” may be any kind of resource,
including, without limitation static and dynamic: video con-
tent, audio content, text, image content, web pages, Hypertext
Markup Language (HTML ) files, XML files, files in a markup
language, documents, hypertext documents, data files, and
embedded resources.

Once a TCP/IP connection is made between two machines
(e.g., client 19 and a particular cluster member, server 14-k
(for some value of k)), the server 14-k may receive a request
from the client 19, e.g., for aresource. For example, the server
14-k may receive an HTTP request (e.g., an HTTP GET
request) from client 19. Such a request generally includes a
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URL along with various HTTP headers (e.g., a host header,
etc.). The selected server 14-k now determines whether it is
responsible to handle this request or whether the request
should be passed on to a different cluster member. To make
this determination, the selected server 14-k considers the
request itself and applies a second given function to at least
some of the information used to make the request (e.g., to the
URL and/or headers in the request).

This second function essentially partitions the request
space (e.g., the URL space) so as to determine whether the
selected server is, in fact, responsible to for this particular
request. If the server determines that it is responsible for the
request, it continues processing the request. If not, the server
hands-oft the request (as described below) on to another
cluster member (e.g., server 14-p) that is responsible for the
request. Having successfully passed off the request, the clus-
ter member, server 14-%, updates its firewall to reject packets
associated with the connection. The responsible cluster mem-
ber (server 14-p) correspondingly updates its firewall to
accept packets associated with this connection.

For the sake of this discussion, the function used to parti-
tion the requests is referred to as a partition function. The
partition function may be a hash function or the like. In some
cases the partition function may take into account the nature
or type of request or resource requested. For example, certain
cluster members may be allocated to certain types of requests
(e.g., movies, software applications, etc.). The partition func-
tion applied to the URL (and/or other information) can be
used to implement a degree of policy based load mapping.

Exemplary partition functions are:

Partition(URL, m)—{1...m}
Partition(URL, host header, m)—={1...m}

Partition(URL, HTTP headers, m)—>{1...m}
where Partition (params, m) is implemented as, e.g.,

hash(params) modulo m

where m is the number of active servers in the cluster.

Those skilled in the art will realize and understand, upon
reading this description, that different and or other parameters
may be used in the Partition function. Further, not all parts of
a parameter need be used. For example, if the URL is a
parameter, the function may choose to use only a part of the
URL (e.g., the hostname).

Since accounting and other information may be included in
HTTP headers and/or URLs, such information may be used
by the partition function. For example, a cluster may com-
prise a number of non-homogenous servers. Certain requests
may be directed to certain cluster servers based on server
capability (e.g., speed) or based on arrangements with cus-
tomers.

In order to hand off a request to another server within its
cluster, a server must be able to completely move an indi-
vidual established TCP connection from one server to another
in the same cluster. The following scenario, with references to
FIGS. 2-4, describe this operation of the system. As shown in
the FIG. 2, the cluster includes two servers: server A and
server B. Each of the servers runs a web cache, listening on a
shared VIP (and port, e.g., port 80). Remote clients make
incoming TCP connections to the VIP and port (as described
above).

Using the TCP-level load balancing described above,
assume that server A is initially selected to accept a particular
TCP connection from a client (at S30 in FIG. 3). Server A
accepts the connection from the client and waits for the HTTP
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request from the client. Using information from the HTTP
request (e.g., the URL and one or more HT TP headers) server
A decides to hand the request off to the server B. That is, the
selected server (server A in this example) ascertains (using
the partition function described above) whether it is the server
responsible for the request (at S31). If the originally-selected
server is responsible for the request (at S32), then it handles
the request (at S33), otherwise it hands off (or tries to hand
off) the request to the responsible cluster member (server B in
this example) (at S34). If the handoff is determined to be
successful (at S35), then the server responsible for the request
(Server B in the example) handles the request (at S36), oth-
erwise the originally selected server (Server A) handles the
request (at S37).

The hand-off process (S34) takes place as follows (with
reference to FIG. 4) (for the purposes of this discussion,
assume that server A hands off to server B):

First the originally-selected server (Server A) freezes the
TCP connection from the client (at S40). The selected server
(Server A) then takes a snapshot of the frozen TCP connection
(at S41), storing required information about the connection.
The originally-selected server (Server A) then sends the snap-
shot of the frozen TCP connection to the responsible server
(server B), preferably using a side communication channel to
the responsible server (at S42).

The responsible server (Server B) receives the snapshot of
the frozen TCP connection from the originally-selected
server (Server A) (at S43). Using the snapshot of the frozen
TCP connection, the responsible server (Server B) attempts to
clone the TCP connection to the remote client (at S44). If the
connection was cloned successfully, the responsible server
(server B) sends acknowledgement to the originally-selected
server (Server A), preferably using the side communication
channel to the server A (at S45).

Upon receipt of the acknowledgement, the originally-se-
lected server (Server A) closes the frozen TCP connection to
the client (at S46).

The responsible server (Server B) then thaws the frozen
(clone) TCP connection to the client (at S47).

With the handoff successful, the responsible server (Server
B) continues to process incoming HTTP request from the
client (at 52 in FIG. 4).

The accepting server may fail to clone connection or may
refuse to satisty handoft request. In these cases a negative
acknowledgment will be sent and originating (handoff) server
will continue to process original request. Should the respon-
sible server (Server B) decline (or fail to satisfy) the handoff
request from the originally-selected server (Server A), server
A may thaw the TCP connection and continue to serve it
locally.

Aresponsible server generally should not decline a handoff
request or a request to take over a connection. However, a
responsible server may have to decline a request, for example
if its software is being shutdown. Note, too that two or more
servers in the same cluster may be responsible for the same
content, and may provide a degree of redundancy in content
(to reduce fills from the origin server) and also to handle a
so-called “flash crowd” when a certain piece of content
becomes very popular for a relatively short period time.

When a handoft is successful, the responsible server must
update its firewall to accept packets relating to that connec-
tion (and the server that handed off the connection must
update its firewall to no longer accept such packets).

It should be apparent that only the server that is actually
handling the connection will invoke the partition function.
The other servers do not generally have the information
required (e.g., the URL) to make the required decision.
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The server making the handoff may provide the respon-
sible server with information about the request (e.g., the type
of'request, the URL, the headers, etc.). In this way the respon-
sible server may have sufficient information to satisfy the
request.

Example 11
By way of example, and without limitation, consider a

cluster with 8 ports and with 7 active servers connected to
those ports as shown in the following table:

Port #. 0 1 2 3 4 5 6 7
Server SO S1 S2 S3 S4 — S5 S6
Bucket 0 1 2 3 4 5 6

In this case, the number of active servers, m, is 7, there are
seven buckets (numbered 0 to 6), and so the mapping function
should produce a number in the range 0 to 6. Suppose, for the
sake of this example, that the mapping function is:

MAP(source IP, destination IP, destination port,
m)=hash(source IP, destination IP, destination
port) modulo m

If a connection request comes in from IP address
123.156.189.123, for the VIP (1.0.0.1) on port 80. Each server
runs the mapping function hash (123.156.189.123, 1.0.0.1,
80) modulo 7

Suppose that this mapping produces a value of 4 then
server S4 (which corresponds to bucket 4) is selected at the
TCP level to handle the connection. Server S4 and the client
then establish their connection and the client then sends an
HTTP request (e.g., a GET request with a URL (URL1) and
header information).

Server S4 invokes the partition function:

Partition(URL1, host header, 7)

Note that the partition function can use the same bucket
association as the mapping function or it may use a different
association. For example, if the partition function is imple-
menting policy-based or capacity based distribution, then the
partition function may need a separate bucket association. For
this example, assume that the partition function uses the same
bucket association as the mapping function.

Suppose that this invocation of the partition function
returns a value of 6. This means that server S6 (associated
with bucket no. 6) should handle this connection instead of
the initially-selected server S4. So server S4 tries to hand off
the connection to server S6.

Server S4 freezes the TCP connection from the client (at
S40 in FIG. 4) and then takes a snapshot of the frozen TCP
connection, storing required information about the connec-
tion (at S41). Server S4 sends the snapshot of the frozen TCP
connection to Server S6, preferably using a side communica-
tion channel (at S42). Server S6 receives the snapshot of the
frozen TCP connection from Server S4 (at S43). Using the
snapshot of the frozen TCP connection, Server S6 attempts to
clone the TCP connection to the remote client (at S44). If the
connection is successfully cloned, then server S6 sends an
acknowledgement to Server S4, preferably using the side
communication channel (at S45). Upon receipt of the
acknowledgement, Server S4 closes the frozen TCP connec-
tion to the client (at S46). Server S6 then thaws the frozen
(clone) TCP connection to the client (at S47). With the hand-
off successful, Server S6 continues to process incoming
HTTP request from the client.



US 9,197,699 B2

13
Suppose now that another connection request comes in,
this time from IP address 123.156.111.123, for the VIP
(1.0.0.1) on port 80. Each server runs the mapping function:

hash(123.156.111.123, 1.0.0.1, 80) modulo 7

Suppose that the result of this function is 6 which corre-
sponds to server S6. S6 connects with the client and the client
then sends an HTTP GET request with a URL (URL1—the
same as in the earlier request) and header information. Server
S6 invokes the partition function:

Partition(URL1, host header, 7)

Again the partition function returns the value 6. However,
in this case the server responsible for the request is the one
already handling the request, and so no handoff is needed
(i.e., the check at S32 will return “YES”). Note that since
server S6 has already served the resource associated with
URLI, it may still have that resource cached.

End of Example 11

Note that the number of servers connected to the switch
could be greater than the number of servers responsible for
the VIP. For example, a cluster may be configured with 20
servers connected to the same switch, 10 servers serving one
VIP and another 10 servers serving another VIP. In this case
the heartbeat assists in load balancing for two VIPs, and each
VIP will be load balanced across 10 servers.

As shown in FIG. 5, a collection of load-balancing clusters
10-1,10-2, .. .,10-p, may be combined. Each cluster 10-; has
one or more corresponding VIPs (VIP-j), so that requests for
a server at the IP address VIP-k (for some value of k) will be
directed (by router 110) to the appropriate cluster for han-
dling by one of the cluster members. The router 110 may be,
e.g., a load balancing router.

A client 19 may request a resource and be directed by a
server selector system (e.g., DNS or the like) to a cluster. The
server selector returns an IP address that happens to be a VIP
address. The client then requests the resource from the VIP
and, as described above, is connected (during a TCP connec-
tion) to a particular cluster member to handle the request.

If'the cluster implements the partitioning function, then the
connection may be handed off to another cluster member.

FIGS. 6 (6A and 6B) is a flowchart (600-1 and 600-2) of
processing steps associated with server interactions.

In step 605, the cluster (i.e., via a switch) obtains a con-
nection request to connect to a server associated with the
virtual IP address (i.e., any server sitting behind the switch
associated with a virtual IP address).

In step 610, the cluster (i.e., via the switch) provides the
connection request to each server connected to the switch.

Instep 615, at least one of the plurality of servers connected
to the switch determines which of the plurality of servers
should handle the connection. Such a determination can be
based, for example, on a given function of information used to
request the connection.

In step 620, if the server that is determined to handle the
request does not have a copy of the requested resource, that
server then requests to hand-oft the connection (i.e., TCP
connection) to at least one other of the plurality of servers that
does have a copy of the requested resource. Note that the
server may request a copy of the requested resource (e.g., via
a peer-fill request) from another server that has a copy of the
resource instead of sending a hand-off request.

In step 625, the server that has a copy of the requested
resource determines whether to accept or reject the hand-off
request (or reject or accept the peer-fill request) from the
server that was originally determined to handle the connec-
tion/request. This determination can be based, for example,
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on the size of the requested resource, the popularity of the
requested resource, as well as other attributes that are suitable
for determining whether or not a TCP hand-off should occur
in a server cluster in response to a request for certain
resources.

In step 630, the server that has the copy of the requested
resource accepts the hand-off request (or rejects the peer-fill
request) if the size of the requested resource value exceeds a
threshold value. In this example embodiment, ifthe size of the
requested resource is determined to be too large (i.e., exceeds
a threshold value) for expending precious system and net-
work resource (i.e., by providing intra-cluster copies of
resources, for example, one server sending a copy of a
resource to another server in the cluster), then the server with
the requested resource will handle the request itself (i.e.,
serve the requested resources, and, for example, not honor the
peer-fill request).

In step 635, the server that has the copy of the requested
resource accepts the hand-off request (or rejects the peer-fill
request) if the popularity of the requested resource does not
exceed a popularity threshold value. In other words, if it
determined that the requested content is not popular (i.e., the
number of times the particular resource has been requested
during a retrospective time period does not exceed a threshold
value), then the server with the copy of the request resource
handles the connection and serves the resource (and, for
example, does not honor the peer-fill request). Since the
resource is not yet deemed popular, it is likely that the
resource will not be requested as often and therefore is would
not be efficient to transfer copies of the resource to other
servers in the cluster.

In step 640, the server that has the copy of the requested
resource rejects the hand-off request (or accepts/honors the
peer-fill request if a copy of the resource is available) if the
popularity of the requested resource exceeds the popularity
threshold value. In this example circumstance, since it is
determined that the requested content is popular, then it fur-
ther behooves the cluster to have copies of the requested
resource on other servers in the cluster to handle the possi-
bility of more requests for the popular resource. Thus, instead
of accepting the hand-off request, the server with the copy of
the requested resource rejects the request, which, in one
embodiment, forces the requesting server to obtain and serve
the requested resource itself (and, thus, maintain a copy ofthe
popular resource, for example, by honoring the peer-fill
request and thus providing a copy of the requested resource).

In step 645, the server that has the copy of the requested
resource rejects the hand-off request (or accepts/honors the
peer-fill request if a copy of the resource is available) if the
popularity of the requested resource exceeds the popularity
threshold value and the size of the requested resource exceeds
the threshold size value. This particular step elucidates the
significance of popular content. Even if the size of the
requested resource is deemed to large to send an intra-cluster
copy from one server to another server within the same cluster
(i.e., in light of the expenditure to system and network
resources within the cluster), the popularity of the content
may still make it more efficient in the long run to distribute a
copy (or copies) of the requested resource throughout the
cluster in anticipation of more requests for the popular con-
tent at the cluster. For example, one way to distribute copies of
the requested resource is to reject the hand-off request and
(either directly or indirectly) force the originally-selected
server to handle the connection and ultimately serve the
requested resource.

FIG. 7 is a flowchart 700 of processing steps associated
with server interactions.
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In step 705, a connection request to connect to a server
associated with the IP address is received (e.g., at a cluster
comprising a switch and plurality of server connected thereto
via one or more ports of the switch).

In step 710, a determination is made as to which of the
plurality servers is to handle the connection (e.g., via a hash
function).

In step 720, if a first server of the plurality of servers is
determined to be the server to handle the connection (e.g., via
the hash function), and the first server does not have a copy of
the requested resource, the first server provides a notification
to a second server of the plurality of servers that does have a
copy of the requested resource. In one example embodiment,
the notification indicates that the first server does not have a
copy of the requested resource. Alternatively, the notification
can include a hand-off request to hand-off the connection to
another server (e.g., the second server in this step), and/or a
peer-fill request that requests a copy of the requested resource
from another server (e.g., the second server in this step).

In step 725, in response to receiving the notification from
the first server, the second sever determines whether to: 1)
provide a copy of the requested resource to said server (e.g.,
reject a hand-off request or accept a peer-fill request if a copy
of'therequested resource is available), or ii) request the server
to handoff the connection to the second server so that the
second server can serve the requested resource (e.g., accept a
hand-off request or reject a peer-fill request). For example, in
one embodiment this determining may be based on an
attribute of the requested resource (e.g., size, popularity, etc.).

Although aspects of this invention have been described
with reference to a particular system, the present invention
operates on any computer system and can be implemented in
software, hardware or any combination thereof. When imple-
mented fully or partially in software, the invention can reside,
permanently or temporarily, on any memory or storage
medium, including but not limited to a RAM, a ROM, a disk,
an ASIC, a PROM and the like.

While certain configurations of structures have been illus-
trated for the purposes of presenting the basic structures of the
present invention, one of ordinary skill in the art will appre-
ciate that other variations are possible which would still fall
within the scope of the appended claims. While the invention
has been described in connection with what is presently con-
sidered to be the most practical and preferred embodiment, it
is to be understood that the invention is not to be limited to the
disclosed embodiment, but on the contrary, is intended to
cover various modifications and equivalent arrangements
included within the spirit and scope of the appended claims.

What is claimed is:

1. A method, operable in a load-balancing cluster compris-
ing:

a switch having a plurality of ports; and

a plurality of servers connected to at least some of the

plurality of ports of the switch, each of said servers being

addressable by the same virtual Internet Protocol (VIP)

address, the method comprising:

in response to a connection request at said switch to
connect a client computer to a server associated with
said VIP address, a first server of said plurality of
servers establishing a first connection with the client
computer as a Transmission Control Protocol (TCP)
connection;

after establishing the TCP connection with the client
computer, and in response to a Hypertext Transfer
Protocol (“HTTP”) resource request received by said
first server from said client computer for a particular
resource, said first server determining whether or not
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to attempt to handoff the request to a second server of
said plurality of servers; and
based on said determining, said first server handing off

the TCP connection with the client computer to the

second server when said first server determines that it

should attempt to handoff the request to the second

server, wherein said handing off comprises:

said first server freezing the TCP connection from the
client computer,

said first server generating a snapshot of the frozen
TCP connection,

said first server sending the snapshot of the frozen
TCP connection to said second server,

said second server receiving the snapshot of the fro-
zen TCP connection from said first server,

by using the snapshot of the frozen TCP connection
received from said first server, said second server
cloning the TCP connection to the client computer,
and

said second server thawing the frozen TCP connec-
tion to client.

2. The method as recited in claim 1, wherein said handing
off further comprises:

upon a successful cloning of the TCP connection with the

client computer, said second server sending an acknowl-
edgment to said first server.

3. The method as recited in claim 2, wherein said handing
off further comprises:

upon receipt of the acknowledgment from said second

server, said first server closing the TCP connection to the
client computer.

4. The method as recited in claim 1, wherein said thawing
the frozen TCP connection comprises:

said second server processing further incoming HTTP

requests from the client computer via the thawed TCP
connection.

5. The method as recited in claim 1, wherein said first
server sends the snapshot of the frozen TCP connection to
said second server via a side communication channel.

6. The method as recited in claim 1, wherein said first
server generating a snapshot of the frozen TCP connection
comprises said first server storing required information about
the TCP connection.

7. A system comprising:

a switch having a plurality of ports; and

a plurality of servers connected to at least some of the

plurality of ports ofthe switch, each of said servers being

addressable by the same virtual Internet Protocol (VIP)

address, wherein the system comprises:

a first server of said plurality of servers,

a second server of said plurality of servers,

and wherein

in response to a connection request at said switch to
connect a client computer to a server associated with
said VIP address, said first server operable to establish
a first connection with the client computer as a Trans-
mission Control Protocol (TCP) connection;

after establishing the TCP connection with the client
computer, and in response to a Hypertext Transfer
Protocol (“HTTP”) resource request received by said
first server from said client computer for a particular
resource, said first server operable to determine
whether or not to attempt to handoftf the request to said
second server; and

based on said determining, said first server operable to
hand off the TCP connection with the client computer
to the second server when said first server determines
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that it should attempt to handoft the request to the
second server, wherein said handing off comprises:
said first server operable to freeze the TCP connection
from the client computer,
said first server operable to generate a snapshot of the
frozen TCP connection,
said first server operable to send the snapshot of the
frozen TCP connection to said second server,
said second server operable to receive the snapshot of
the frozen TCP connection from said first server,
by using the snapshot of the frozen TCP connection
received from said first server, said second server
operable to clone the TCP connection to the client
computer, and
said second server operable to thaw the frozen TCP
connection to client.
8. The system as recited in claim 7, wherein said handing
off further comprises:
upon a successtul cloning of the TCP connection with the
client computer, said second server operable to send an
acknowledgment to said first server.
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9. The system as recited in claim 8, wherein said handing
off further comprises:

upon receipt of the acknowledgment from said second
server, said first server operable to close the TCP con-
nection to the client computer.

10. The system as recited in claim 7, wherein said thawing
the frozen TCP connection comprises:

said second server operable to process further incoming
HTTP requests from the client computer via the thawed
TCP connection.

11. The system as recited in claim 7, wherein said first
server sends the snapshot of the frozen TCP connection to
said second server via a side communication channel.

12. The system as recited in claim 7, wherein said first
server generating a snapshot of the frozen TCP connection
comprises said first server storing required information about
the TCP connection.



